Statistics > Methodology
[Submitted on 24 Nov 2022 (v1), last revised 10 Nov 2023 (this version, v3)]
Title:A Multivariate Non-Gaussian Bayesian Filter Using Power Moments
View PDFAbstract:In this paper, we extend our results on the univariate non-Gaussian Bayesian filter using power moments to the multivariate systems, which can be either linear or nonlinear. Doing this introduces several challenging problems, for example a positive parametrization of the density surrogate, which is not only a problem of filter design, but also one of the multiple dimensional Hamburger moment problem. We propose a parametrization of the density surrogate with the proofs to its existence, Positivstellensatz and uniqueness. Based on it, we analyze the errors of moments of the density estimates by the proposed density surrogate. A discussion on continuous and discrete treatments to the non-Gaussian Bayesian filtering problem is proposed to motivate the research on continuous parametrization of the system state. Simulation results on estimating different types of multivariate density functions are given to validate our proposed filter. To the best of our knowledge, the proposed filter is the first one implementing the multivariate Bayesian filter with the system state parameterized as a continuous function, which only requires the true states being Lebesgue integrable.
Submission history
From: Guangyu Wu [view email][v1] Thu, 24 Nov 2022 02:02:15 UTC (2,618 KB)
[v2] Tue, 4 Jul 2023 14:24:10 UTC (3,303 KB)
[v3] Fri, 10 Nov 2023 00:02:18 UTC (3,437 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.