Computer Science > Artificial Intelligence
[Submitted on 22 Nov 2022 (v1), last revised 22 Mar 2024 (this version, v3)]
Title:Decision-making with Speculative Opponent Models
View PDF HTML (experimental)Abstract:Opponent modelling has proven effective in enhancing the decision-making of the controlled agent by constructing models of opponent agents. However, existing methods often rely on access to the observations and actions of opponents, a requirement that is infeasible when such information is either unobservable or challenging to obtain. To address this issue, we introduce Distributional Opponent-aided Multi-agent Actor-Critic (DOMAC), the first speculative opponent modelling algorithm that relies solely on local information (i.e., the controlled agent's observations, actions, and rewards). Specifically, the actor maintains a speculated belief about the opponents using the tailored speculative opponent models that predict the opponents' actions using only local information. Moreover, DOMAC features distributional critic models that estimate the return distribution of the actor's policy, yielding a more fine-grained assessment of the actor's quality. This thus more effectively guides the training of the speculative opponent models that the actor depends upon. Furthermore, we formally derive a policy gradient theorem with the proposed opponent models. Extensive experiments under eight different challenging multi-agent benchmark tasks within the MPE, Pommerman and StarCraft Multiagent Challenge (SMAC) demonstrate that our DOMAC successfully models opponents' behaviours and delivers superior performance against state-of-the-art methods with a faster convergence speed.
Submission history
From: Jing Sun [view email][v1] Tue, 22 Nov 2022 01:29:47 UTC (7,191 KB)
[v2] Wed, 6 Mar 2024 04:10:53 UTC (7,191 KB)
[v3] Fri, 22 Mar 2024 04:40:11 UTC (7,054 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.