Computer Science > Networking and Internet Architecture
[Submitted on 16 Nov 2022]
Title:Bayesian Optimization for Online Management in Dynamic Mobile Edge Computing
View PDFAbstract:Recent years have witnessed the emergence of mobile edge computing (MEC), on the premise of a cost-effective enhancement in the computational ability of hardware-constrained wireless devices (WDs) comprising the Internet of Things (IoT). In a general multi-server multi-user MEC system, each WD has a computational task to execute and has to select binary (off)loading decisions, along with the analog-amplitude resource allocation variables in an online manner, with the goal of minimizing the overall energy-delay cost (EDC) with dynamic system states. While past works typically rely on the explicit expression of the EDC function, the present contribution considers a practical setting, where in lieu of system state information, the EDC function is not available in analytical form, and instead only the function values at queried points are revealed. Towards tackling such a challenging online combinatorial problem with only bandit information, novel Bayesian optimization (BO) based approaches are put forth by leveraging the multi-armed bandit (MAB) framework. Per time slot, the discrete offloading decisions are first obtained via the MAB method, and the analog resource allocation variables are subsequently optimized using the BO selection rule. By exploiting both temporal and contextual information, two novel BO approaches, termed time-varying BO and contextual time-varying BO, are developed. Numerical tests validate the merits of the proposed BO approaches compared with contemporary benchmarks under different MEC network sizes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.