Computer Science > Computation and Language
[Submitted on 16 Nov 2022 (v1), last revised 26 May 2023 (this version, v4)]
Title:Towards Robust Low-Resource Fine-Tuning with Multi-View Compressed Representations
View PDFAbstract:Due to the huge amount of parameters, fine-tuning of pretrained language models (PLMs) is prone to overfitting in the low resource scenarios. In this work, we present a novel method that operates on the hidden representations of a PLM to reduce overfitting. During fine-tuning, our method inserts random autoencoders between the hidden layers of a PLM, which transform activations from the previous layers into multi-view compressed representations before feeding them into the upper layers. The autoencoders are plugged out after fine-tuning, so our method does not add extra parameters or increase computation cost during inference. Our method demonstrates promising performance improvement across a wide range of sequence- and token-level low-resource NLP tasks.
Submission history
From: Xingxuan Li [view email][v1] Wed, 16 Nov 2022 09:39:29 UTC (1,420 KB)
[v2] Sat, 6 May 2023 06:51:18 UTC (7,844 KB)
[v3] Thu, 11 May 2023 06:56:50 UTC (1,427 KB)
[v4] Fri, 26 May 2023 16:47:18 UTC (1,430 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.