Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Nov 2022]
Title:False: False Negative Samples Aware Contrastive Learning for Semantic Segmentation of High-Resolution Remote Sensing Image
View PDFAbstract:The existing SSCL of RSI is built based on constructing positive and negative sample pairs. However, due to the richness of RSI ground objects and the complexity of the RSI contextual semantics, the same RSI patches have the coexistence and imbalance of positive and negative samples, which causing the SSCL pushing negative samples far away while pushing positive samples far away, and vice versa. We call this the sample confounding issue (SCI). To solve this problem, we propose a False negAtive sampLes aware contraStive lEarning model (FALSE) for the semantic segmentation of high-resolution RSIs. Since the SSCL pretraining is unsupervised, the lack of definable criteria for false negative sample (FNS) leads to theoretical undecidability, we designed two steps to implement the FNS approximation determination: coarse determination of FNS and precise calibration of FNS. We achieve coarse determination of FNS by the FNS self-determination (FNSD) strategy and achieve calibration of FNS by the FNS confidence calibration (FNCC) loss function. Experimental results on three RSI semantic segmentation datasets demonstrated that the FALSE effectively improves the accuracy of the downstream RSI semantic segmentation task compared with the current three models, which represent three different types of SSCL models. The mean Intersection-over-Union on ISPRS Potsdam dataset is improved by 0.7\% on average; on CVPR DGLC dataset is improved by 12.28\% on average; and on Xiangtan dataset this is improved by 1.17\% on average. This indicates that the SSCL model has the ability to self-differentiate FNS and that the FALSE effectively mitigates the SCI in self-supervised contrastive learning. The source code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.