Computer Science > Data Structures and Algorithms
[Submitted on 8 Nov 2022]
Title:On the amortized complexity of approximate counting
View PDFAbstract:Naively storing a counter up to value $n$ would require $\Omega(\log n)$ bits of memory. Nelson and Yu [NY22], following work of [Morris78], showed that if the query answers need only be $(1+\epsilon)$-approximate with probability at least $1 - \delta$, then $O(\log\log n + \log\log(1/\delta) + \log(1/\epsilon))$ bits suffice, and in fact this bound is tight. Morris' original motivation for studying this problem though, as well as modern applications, require not only maintaining one counter, but rather $k$ counters for $k$ large. This motivates the following question: for $k$ large, can $k$ counters be simultaneously maintained using asymptotically less memory than $k$ times the cost of an individual counter? That is to say, does this problem benefit from an improved {\it amortized} space complexity bound?
We answer this question in the negative. Specifically, we prove a lower bound for nearly the full range of parameters showing that, in terms of memory usage, there is no asymptotic benefit possible via amortization when storing multiple counters. Our main proof utilizes a certain notion of "information cost" recently introduced by Braverman, Garg and Woodruff in FOCS 2020 to prove lower bounds for streaming algorithms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.