Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 4 Nov 2022 (v1), last revised 9 Feb 2023 (this version, v2)]
Title:Sampling Rate Offset Estimation and Compensation for Distributed Adaptive Node-Specific Signal Estimation in Wireless Acoustic Sensor Networks
View PDFAbstract:Sampling rate offsets (SROs) between devices in a heterogeneous wireless acoustic sensor network (WASN) can hinder the ability of distributed adaptive algorithms to perform as intended when they rely on coherent signal processing. In this paper, we present an SRO estimation and compensation method to allow the deployment of the distributed adaptive node-specific signal estimation (DANSE) algorithm in WASNs composed of asynchronous devices. The signals available at each node are first utilised in a coherence-drift-based method to blindly estimate SROs which are then compensated for via phase shifts in the frequency domain. A modification of the weighted overlap-add (WOLA) implementation of DANSE is introduced to account for SRO-induced full-sample drifts, permitting per-sample signal transmission via an approximation of the WOLA process as a time-domain convolution. The performance of the proposed algorithm is evaluated in the context of distributed noise reduction for the estimation of a target speech signal in an asynchronous WASN.
Submission history
From: Paul Didier [view email][v1] Fri, 4 Nov 2022 14:38:14 UTC (372 KB)
[v2] Thu, 9 Feb 2023 20:12:20 UTC (1,678 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.