Computer Science > Cryptography and Security
[Submitted on 3 Nov 2022 (v1), last revised 18 Jul 2023 (this version, v2)]
Title:AdaChain: A Learned Adaptive Blockchain
View PDFAbstract:This paper presents AdaChain, a learning-based blockchain framework that adaptively chooses the best permissioned blockchain architecture in order to optimize effective throughput for dynamic transaction workloads. AdaChain addresses the challenge in the Blockchain-as-a-Service (BaaS) environments, where a large variety of possible smart contracts are deployed with different workload characteristics. AdaChain supports automatically adapting to an underlying, dynamically changing workload through the use of reinforcement learning. When a promising architecture is identified, AdaChain switches from the current architecture to the promising one at runtime in a way that respects correctness and security concerns. Experimentally, we show that AdaChain can converge quickly to optimal architectures under changing workloads, significantly outperform fixed architectures in terms of the number of successfully committed transactions, all while incurring low additional overhead.
Submission history
From: Ryan Marcus [view email][v1] Thu, 3 Nov 2022 04:25:46 UTC (1,637 KB)
[v2] Tue, 18 Jul 2023 00:12:59 UTC (2,302 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.