Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Oct 2022 (v1), last revised 7 Jun 2023 (this version, v3)]
Title:ImplantFormer: Vision Transformer based Implant Position Regression Using Dental CBCT Data
View PDFAbstract:Implant prosthesis is the most appropriate treatment for dentition defect or dentition loss, which usually involves a surgical guide design process to decide the implant position. However, such design heavily relies on the subjective experiences of dentists. In this paper, a transformer-based Implant Position Regression Network, ImplantFormer, is proposed to automatically predict the implant position based on the oral CBCT data. We creatively propose to predict the implant position using the 2D axial view of the tooth crown area and fit a centerline of the implant to obtain the actual implant position at the tooth root. Convolutional stem and decoder are designed to coarsely extract image features before the operation of patch embedding and integrate multi-level feature maps for robust prediction, respectively. As both long-range relationship and local features are involved, our approach can better represent global information and achieves better location performance. Extensive experiments on a dental implant dataset through five-fold cross-validation demonstrated that the proposed ImplantFormer achieves superior performance than existing methods.
Submission history
From: Xinquan Yang [view email][v1] Sat, 29 Oct 2022 02:31:27 UTC (21,101 KB)
[v2] Mon, 5 Jun 2023 09:20:38 UTC (11,809 KB)
[v3] Wed, 7 Jun 2023 07:12:45 UTC (11,809 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.