Computer Science > Sound
[Submitted on 27 Oct 2022 (v1), last revised 15 Mar 2023 (this version, v2)]
Title:Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised Learning for Text-To-Speech
View PDFAbstract:This paper proposes Virtuoso, a massively multilingual speech-text joint semi-supervised learning framework for text-to-speech synthesis (TTS) models. Existing multilingual TTS typically supports tens of languages, which are a small fraction of the thousands of languages in the world. One difficulty to scale multilingual TTS to hundreds of languages is collecting high-quality speech-text paired data in low-resource languages. This study extends Maestro, a speech-text joint pretraining framework for automatic speech recognition (ASR), to speech generation tasks. To train a TTS model from various types of speech and text data, different training schemes are designed to handle supervised (paired TTS and ASR data) and unsupervised (untranscribed speech and unspoken text) datasets. Experimental evaluation shows that 1) multilingual TTS models trained on Virtuoso can achieve significantly better naturalness and intelligibility than baseline ones in seen languages, and 2) they can synthesize reasonably intelligible and naturally sounding speech for unseen languages where no high-quality paired TTS data is available.
Submission history
From: Takaaki Saeki [view email][v1] Thu, 27 Oct 2022 14:09:48 UTC (240 KB)
[v2] Wed, 15 Mar 2023 10:52:03 UTC (239 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.