Computer Science > Sound
[Submitted on 26 Oct 2022]
Title:Fast Yet Effective Speech Emotion Recognition with Self-distillation
View PDFAbstract:Speech emotion recognition (SER) is the task of recognising human's emotional states from speech. SER is extremely prevalent in helping dialogue systems to truly understand our emotions and become a trustworthy human conversational partner. Due to the lengthy nature of speech, SER also suffers from the lack of abundant labelled data for powerful models like deep neural networks. Pre-trained complex models on large-scale speech datasets have been successfully applied to SER via transfer learning. However, fine-tuning complex models still requires large memory space and results in low inference efficiency. In this paper, we argue achieving a fast yet effective SER is possible with self-distillation, a method of simultaneously fine-tuning a pretrained model and training shallower versions of itself. The benefits of our self-distillation framework are threefold: (1) the adoption of self-distillation method upon the acoustic modality breaks through the limited ground-truth of speech data, and outperforms the existing models' performance on an SER dataset; (2) executing powerful models at different depth can achieve adaptive accuracy-efficiency trade-offs on resource-limited edge devices; (3) a new fine-tuning process rather than training from scratch for self-distillation leads to faster learning time and the state-of-the-art accuracy on data with small quantities of label information.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.