Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Oct 2022 (v1), last revised 2 Oct 2023 (this version, v3)]
Title:A Survey on Deep Generative 3D-aware Image Synthesis
View PDFAbstract:Recent years have seen remarkable progress in deep learning powered visual content creation. This includes deep generative 3D-aware image synthesis, which produces high-idelity images in a 3D-consistent manner while simultaneously capturing compact surfaces of objects from pure image collections without the need for any 3D supervision, thus bridging the gap between 2D imagery and 3D reality. The ield of computer vision has been recently captivated by the task of deep generative 3D-aware image synthesis, with hundreds of papers appearing in top-tier journals and conferences over the past few years (mainly the past two years), but there lacks a comprehensive survey of this remarkable and swift progress. Our survey aims to introduce new researchers to this topic, provide a useful reference for related works, and stimulate future research directions through our discussion section. Apart from the presented papers, we aim to constantly update the latest relevant papers along with corresponding implementations at this https URL.
Submission history
From: Weihao Xia [view email][v1] Tue, 25 Oct 2022 18:45:08 UTC (910 KB)
[v2] Sun, 30 Oct 2022 08:35:21 UTC (900 KB)
[v3] Mon, 2 Oct 2023 18:57:51 UTC (7,957 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.