Computer Science > Logic in Computer Science
[Submitted on 24 Oct 2022 (v1), last revised 26 Oct 2022 (this version, v2)]
Title:Towards a Higher-Order Mathematical Operational Semantics
View PDFAbstract:Compositionality proofs in higher-order languages are notoriously involved, and general semantic frameworks guaranteeing compositionality are hard to come by. In particular, Turi and Plotkin's bialgebraic abstract GSOS framework, which has been successfully applied to obtain off-the-shelf compositionality results for first-order languages, so far does not apply to higher-order languages. In the present work, we develop a theory of abstract GSOS specifications for higher-order languages, in effect transferring the core principles of Turi and Plotkin's framework to a higher-order setting. In our theory, the operational semantics of higher-order languages is represented by certain dinatural transformations that we term pointed higher-order GSOS laws. We give a general compositionality result that applies to all systems specified in this way and discuss how compositionality of the SKI calculus and the $\lambda$-calculus w.r.t. a strong variant of Abramsky's applicative bisimilarity are obtained as instances.
Submission history
From: Stelios Tsampas [view email][v1] Mon, 24 Oct 2022 16:38:55 UTC (104 KB)
[v2] Wed, 26 Oct 2022 16:30:59 UTC (103 KB)
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.