Computer Science > Information Retrieval
[Submitted on 21 Oct 2022 (v1), last revised 26 Oct 2022 (this version, v2)]
Title:Towards Employing Recommender Systems for Supporting Data and Algorithm Sharing
View PDFAbstract:Data and algorithm sharing is an imperative part of data and AI-driven economies. The efficient sharing of data and algorithms relies on the active interplay between users, data providers, and algorithm providers. Although recommender systems are known to effectively interconnect users and items in e-commerce settings, there is a lack of research on the applicability of recommender systems for data and algorithm sharing. To fill this gap, we identify six recommendation scenarios for supporting data and algorithm sharing, where four of these scenarios substantially differ from the traditional recommendation scenarios in e-commerce applications. We evaluate these recommendation scenarios using a novel dataset based on interaction data of the OpenML data and algorithm sharing platform, which we also provide for the scientific community. Specifically, we investigate three types of recommendation approaches, namely popularity-, collaboration-, and content-based recommendations. We find that collaboration-based recommendations provide the most accurate recommendations in all scenarios. Plus, the recommendation accuracy strongly depends on the specific scenario, e.g., algorithm recommendations for users are a more difficult problem than algorithm recommendations for datasets. Finally, the content-based approach generates the least popularity-biased recommendations that cover the most datasets and algorithms.
Submission history
From: Peter Müllner [view email][v1] Fri, 21 Oct 2022 09:02:57 UTC (289 KB)
[v2] Wed, 26 Oct 2022 16:50:22 UTC (289 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.