Computer Science > Artificial Intelligence
[Submitted on 3 Oct 2022 (v1), last revised 14 Feb 2023 (this version, v2)]
Title:Contrastive Multimodal Learning for Emergence of Graphical Sensory-Motor Communication
View PDFAbstract:In this paper, we investigate whether artificial agents can develop a shared language in an ecological setting where communication relies on a sensory-motor channel. To this end, we introduce the Graphical Referential Game (GREG) where a speaker must produce a graphical utterance to name a visual referent object while a listener has to select the corresponding object among distractor referents, given the delivered message. The utterances are drawing images produced using dynamical motor primitives combined with a sketching library. To tackle GREG we present CURVES: a multimodal contrastive deep learning mechanism that represents the energy (alignment) between named referents and utterances generated through gradient ascent on the learned energy landscape. We demonstrate that CURVES not only succeeds at solving the GREG but also enables agents to self-organize a language that generalizes to feature compositions never seen during training. In addition to evaluating the communication performance of our approach, we also explore the structure of the emerging language. Specifically, we show that the resulting language forms a coherent lexicon shared between agents and that basic compositional rules on the graphical productions could not explain the compositional generalization.
Submission history
From: Tristan Karch [view email][v1] Mon, 3 Oct 2022 17:11:18 UTC (2,318 KB)
[v2] Tue, 14 Feb 2023 12:25:11 UTC (2,823 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.