Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Oct 2022]
Title:A deep learning approach for detection and localization of leaf anomalies
View PDFAbstract:The detection and localization of possible diseases in crops are usually automated by resorting to supervised deep learning approaches. In this work, we tackle these goals with unsupervised models, by applying three different types of autoencoders to a specific open-source dataset of healthy and unhealthy pepper and cherry leaf images. CAE, CVAE and VQ-VAE autoencoders are deployed to screen unlabeled images of such a dataset, and compared in terms of image reconstruction, anomaly removal, detection and localization. The vector-quantized variational architecture turns out to be the best performing one with respect to all these targets.
Submission history
From: Massimiliano Lupo Pasini Dr. [view email][v1] Fri, 7 Oct 2022 13:45:18 UTC (4,618 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.