Computer Science > Sound
[Submitted on 6 Oct 2022]
Title:WakeUpNet: A Mobile-Transformer based Framework for End-to-End Streaming Voice Trigger
View PDFAbstract:End-to-end models have gradually become the main technical stream for voice trigger, aiming to achieve an utmost prediction accuracy but with a small footprint. In present paper, we propose an end-to-end voice trigger framework, namely WakeupNet, which is basically structured on a Transformer encoder. The purpose of this framework is to explore the context-capturing capability of Transformer, as sequential information is vital for wakeup-word detection. However, the conventional Transformer encoder is too large to fit our task. To address this issue, we introduce different model compression approaches to shrink the vanilla one into a tiny one, called mobile-Transformer. To evaluate the performance of mobile-Transformer, we conduct extensive experiments on a large public-available dataset HiMia. The obtained results indicate that introduced mobile-Transformer significantly outperforms other frequently used models for voice trigger in both clean and noisy scenarios.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.