Computer Science > Artificial Intelligence
[Submitted on 30 Sep 2022]
Title:Convolutional Neural Networks Quantization with Attention
View PDFAbstract:It has been proven that, compared to using 32-bit floating-point numbers in the training phase, Deep Convolutional Neural Networks (DCNNs) can operate with low precision during inference, thereby saving memory space and power consumption. However, quantizing networks is always accompanied by an accuracy decrease. Here, we propose a method, double-stage Squeeze-and-Threshold (double-stage ST). It uses the attention mechanism to quantize networks and achieve state-of-art results. Using our method, the 3-bit model can achieve accuracy that exceeds the accuracy of the full-precision baseline model. The proposed double-stage ST activation quantization is easy to apply: inserting it before the convolution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.