Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 13 Sep 2022]
Title:Streaming End-to-End Multilingual Speech Recognition with Joint Language Identification
View PDFAbstract:Language identification is critical for many downstream tasks in automatic speech recognition (ASR), and is beneficial to integrate into multilingual end-to-end ASR as an additional task. In this paper, we propose to modify the structure of the cascaded-encoder-based recurrent neural network transducer (RNN-T) model by integrating a per-frame language identifier (LID) predictor. RNN-T with cascaded encoders can achieve streaming ASR with low latency using first-pass decoding with no right-context, and achieve lower word error rates (WERs) using second-pass decoding with longer right-context. By leveraging such differences in the right-contexts and a streaming implementation of statistics pooling, the proposed method can achieve accurate streaming LID prediction with little extra test-time cost. Experimental results on a voice search dataset with 9 language locales shows that the proposed method achieves an average of 96.2% LID prediction accuracy and the same second-pass WER as that obtained by including oracle LID in the input.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.