Computer Science > Machine Learning
[Submitted on 5 Sep 2022]
Title:RX-ADS: Interpretable Anomaly Detection using Adversarial ML for Electric Vehicle CAN data
View PDFAbstract:Recent year has brought considerable advancements in Electric Vehicles (EVs) and associated infrastructures/communications. Intrusion Detection Systems (IDS) are widely deployed for anomaly detection in such critical infrastructures. This paper presents an Interpretable Anomaly Detection System (RX-ADS) for intrusion detection in CAN protocol communication in EVs. Contributions include: 1) window based feature extraction method; 2) deep Autoencoder based anomaly detection method; and 3) adversarial machine learning based explanation generation methodology. The presented approach was tested on two benchmark CAN datasets: OTIDS and Car Hacking. The anomaly detection performance of RX-ADS was compared against the state-of-the-art approaches on these datasets: HIDS and GIDS. The RX-ADS approach presented performance comparable to the HIDS approach (OTIDS dataset) and has outperformed HIDS and GIDS approaches (Car Hacking dataset). Further, the proposed approach was able to generate explanations for detected abnormal behaviors arising from various intrusions. These explanations were later validated by information used by domain experts to detect anomalies. Other advantages of RX-ADS include: 1) the method can be trained on unlabeled data; 2) explanations help experts in understanding anomalies and root course analysis, and also help with AI model debugging and diagnostics, ultimately improving user trust in AI systems.
Submission history
From: Chathurika Wickramasinghe Brahmana [view email][v1] Mon, 5 Sep 2022 16:49:11 UTC (1,163 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.