Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Sep 2022]
Title:1st Place Solution to ECCV 2022 Challenge on Out of Vocabulary Scene Text Understanding: End-to-End Recognition of Out of Vocabulary Words
View PDFAbstract:Scene text recognition has attracted increasing interest in recent years due to its wide range of applications in multilingual translation, autonomous driving, etc. In this report, we describe our solution to the Out of Vocabulary Scene Text Understanding (OOV-ST) Challenge, which aims to extract out-of-vocabulary (OOV) words from natural scene images. Our oCLIP-based model achieves 28.59\% in h-mean which ranks 1st in end-to-end OOV word recognition track of OOV Challenge in ECCV2022 TiE Workshop.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.