Computer Science > Computation and Language
[Submitted on 30 Aug 2022]
Title:Combining keyphrase extraction and lexical diversity to characterize ideas in publication titles
View PDFAbstract:Beyond bibliometrics, there is interest in characterizing the evolution of the number of ideas in scientific papers. A common approach for investigating this involves analyzing the titles of publications to detect vocabulary changes over time. With the notion that phrases, or more specifically keyphrases, represent concepts, lexical diversity metrics are applied to phrased versions of the titles. Thus changes in lexical diversity are treated as indicators of shifts, and possibly expansion, of research. Therefore, optimizing detection of keyphrases is an important aspect of this process. Rather than just one, we propose to use multiple phrase detection models with the goal to produce a more comprehensive set of keyphrases from the source corpora. Another potential advantage to this approach is that the union and difference of these sets may provide automated techniques for identifying and omitting non-specific phrases. We compare the performance of several phrase detection models, analyze the keyphrase sets output of each, and calculate lexical diversity of corpora variants incorporating keyphrases from each model, using four common lexical diversity metrics.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.