Mathematics > Numerical Analysis
[Submitted on 24 Aug 2022]
Title:Arbitrary-order asymptotic expansions of Gaussian quadrature rules with classical and generalised weight functions
View PDFAbstract:Gaussian quadrature rules are a classical tool for the numerical approximation of integrals with smooth integrands and positive weight functions. We derive and expicitly list asymptotic expressions for the points and weights of Gaussian quadrature rules for three general classes of positive weight functions: analytic functions on a bounded interval with algebraic singularities at the endpoints, analytic weight functions on the halfline with exponential decay at infinity and an algebraic singularity at the finite endpoint, and analytic functions on the real line with exponential decay in both directions at infinity. The results include the Gaussian rules of classical orthogonal polynomials (Legendre, Jacobi, Laguerre and Hermite) as special cases. We present experiments indicating the range of the number of points at which these expressions achieve high precision. We provide an algorithm that can compute arbitrarily many terms in these expansions for the classical cases, and many though not all terms for the generalized cases.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.