Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Aug 2022]
Title:Learning an Efficient Multimodal Depth Completion Model
View PDFAbstract:With the wide application of sparse ToF sensors in mobile devices, RGB image-guided sparse depth completion has attracted extensive attention recently, but still faces some problems. First, the fusion of multimodal information requires more network modules to process different modalities. But the application scenarios of sparse ToF measurements usually demand lightweight structure and low computational cost. Second, fusing sparse and noisy depth data with dense pixel-wise RGB data may introduce artifacts. In this paper, a light but efficient depth completion network is proposed, which consists of a two-branch global and local depth prediction module and a funnel convolutional spatial propagation network. The two-branch structure extracts and fuses cross-modal features with lightweight backbones. The improved spatial propagation module can refine the completed depth map gradually. Furthermore, corrected gradient loss is presented for the depth completion problem. Experimental results demonstrate the proposed method can outperform some state-of-the-art methods with a lightweight architecture. The proposed method also wins the championship in the MIPI2022 RGB+TOF depth completion challenge.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.