Electrical Engineering and Systems Science > Signal Processing
[Submitted on 3 Aug 2022]
Title:Psychophysiological Arousal in Young Children Who Stutter: An Interpretable AI Approach
View PDFAbstract:The presented first-of-its-kind study effectively identifies and visualizes the second-by-second pattern differences in the physiological arousal of preschool-age children who do stutter (CWS) and who do not stutter (CWNS) while speaking perceptually fluently in two challenging conditions i.e speaking in stressful situations and narration. The first condition may affect children's speech due to high arousal; the latter introduces linguistic, cognitive, and communicative demands on speakers. We collected physiological parameters data from 70 children in the two target conditions. First, we adopt a novel modality-wise multiple-instance-learning (MI-MIL) approach to classify CWS vs. CWNS in different conditions effectively. The evaluation of this classifier addresses four critical research questions that align with state-of-the-art speech science studies' interests. Later, we leverage SHAP classifier interpretations to visualize the salient, fine-grain, and temporal physiological parameters unique to CWS at the population/group-level and personalized-level. While group-level identification of distinct patterns would enhance our understanding of stuttering etiology and development, the personalized-level identification would enable remote, continuous, and real-time assessment of stuttering children's physiological arousal, which may lead to personalized, just-in-time interventions, resulting in an improvement in speech fluency. The presented MI-MIL approach is novel, generalizable to different domains, and real-time executable. Finally, comprehensive evaluations are done on multiple datasets, presented framework, and several baselines that identified notable insights on CWSs' physiological arousal during speech production.
Submission history
From: Harshit Sharma Mr [view email][v1] Wed, 3 Aug 2022 13:28:15 UTC (26,387 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.