Computer Science > Software Engineering
[Submitted on 18 Aug 2022 (v1), last revised 26 Aug 2022 (this version, v2)]
Title:An Empirical Evaluation of Competitive Programming AI: A Case Study of AlphaCode
View PDFAbstract:AlphaCode is a code generation system for assisting software developers in solving competitive programming problems using natural language problem descriptions. Despite the advantages of the code generating system, the open source community expressed concerns about practicality and data licensing. However, there is no research investigating generated codes in terms of code clone and performance. In this paper, we conduct an empirical study to find code similarities and performance differences between AlphaCode-generated codes and human codes. The results show that (i) the generated codes from AlphaCode are similar to human codes (i.e., the average maximum similarity score is 0.56) and (ii) the generated code performs on par with or worse than the human code in terms of execution time and memory usage. Moreover, AlphaCode tends to generate more similar codes to humans for low-difficulty problems (i.e., four cases have the exact same codes). It also employs excessive nested loops and unnecessary variable declarations for high-difficulty problems, which cause low performance regarding our manual investigation. The replication package is available at https:/doi.org/10.5281/zenodo.6820681
Submission history
From: Bodin Chinthanet [view email][v1] Thu, 18 Aug 2022 02:48:35 UTC (1,739 KB)
[v2] Fri, 26 Aug 2022 03:53:48 UTC (1,739 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.