Computer Science > Computation and Language
[Submitted on 15 Aug 2022]
Title:Reproduction and Replication of an Adversarial Stylometry Experiment
View PDFAbstract:Maintaining anonymity while communicating using natural language remains a challenge. Standard authorship attribution techniques that analyze candidate authors' writing styles achieve uncomfortably high accuracy even when the number of candidate authors is high. Adversarial stylometry defends against authorship attribution with the goal of preventing unwanted deanonymization. This paper reproduces and replicates experiments in a seminal study of defenses against authorship attribution (Brennan et al., 2012). We are able to successfully reproduce and replicate the original results, although we conclude that the effectiveness of the defenses studied is overstated due to a lack of a control group in the original study. In our replication, we find new evidence suggesting that an entirely automatic method, round-trip translation, merits re-examination as it appears to reduce the effectiveness of established authorship attribution methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.