Computer Science > Human-Computer Interaction
[Submitted on 28 Jul 2022 (v1), last revised 27 Jan 2023 (this version, v2)]
Title:Toward Supporting Perceptual Complementarity in Human-AI Collaboration via Reflection on Unobservables
View PDFAbstract:In many real world contexts, successful human-AI collaboration requires humans to productively integrate complementary sources of information into AI-informed decisions. However, in practice human decision-makers often lack understanding of what information an AI model has access to in relation to themselves. There are few available guidelines regarding how to effectively communicate about unobservables: features that may influence the outcome, but which are unavailable to the model. In this work, we conducted an online experiment to understand whether and how explicitly communicating potentially relevant unobservables influences how people integrate model outputs and unobservables when making predictions. Our findings indicate that presenting prompts about unobservables can change how humans integrate model outputs and unobservables, but do not necessarily lead to improved performance. Furthermore, the impacts of these prompts can vary depending on decision-makers' prior domain expertise. We conclude by discussing implications for future research and design of AI-based decision support tools.
Submission history
From: Kenneth Holstein [view email][v1] Thu, 28 Jul 2022 00:05:14 UTC (1,078 KB)
[v2] Fri, 27 Jan 2023 00:19:56 UTC (1,212 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.