Computer Science > Robotics
[Submitted on 22 Jul 2022 (v1), last revised 28 Nov 2022 (this version, v2)]
Title:Static Hovering Realization for Multirotor Aerial Vehicles with Tiltable Propellers
View PDFAbstract:This paper presents a theoretical study on the ability of multi-rotor aerial vehicles (MRAVs) with tiltable propellers to achieve and sustain static hovering at different orientations. To analyze the ability of MRAVs with tiltable propellers to achieve static hovering, a novel linear map between the platform's control inputs and applied forces and moments is introduced. The relation between the introduced map and the platform's ability to hover at different orientations is developed. Correspondingly, the conditions for MRAVs with tiltable propellers to realize and sustain static hovering are detailed. A numerical metric is then introduced, which reflects the ability of MRAVs to sustain static hovering at different orientations. A subclass of MRAVs with tiltable propellers is defined as the Critically Statically Hoverable platforms (CSH), where CSH platforms are MRAVs that cannot sustain static hovering with fixed propellers, but can achieve static hovering with tilting propellers. Finally, extensive simulations are conducted to test and validate the above findings, and to demonstrate the effect of the proposed numerical metric on the platform's dynamics.
Submission history
From: Mahmoud Hamandi [view email][v1] Fri, 22 Jul 2022 08:04:50 UTC (8,098 KB)
[v2] Mon, 28 Nov 2022 12:06:01 UTC (8,170 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.