Computer Science > Logic in Computer Science
[Submitted on 18 Jul 2022 (v1), last revised 18 Aug 2022 (this version, v2)]
Title:Semantic Analysis of Normalisation by Evaluation for Typed Lambda Calculus
View PDFAbstract:This paper studies normalisation by evaluation for typed lambda calculus from a categorical and algebraic viewpoint. The first part of the paper analyses the lambda definability result of Jung and Tiuryn via Kripke logical relations and shows how it can be adapted to unify definability and normalisation, yielding an extensional normalisation result. In the second part of the paper the analysis is refined further by considering intensional Kripke relations (in the form of Artin glueing) and shown to provide a function for normalising terms, casting normalisation by evaluation in the context of categorical glueing. The technical development includes an algebraic treatment of the syntax and semantics of the typed lambda calculus that allows the definition of the normalisation function to be given within a simply typed metatheory. A normalisation-by-evaluation program in a dependently-typed functional programming language is synthesised.
Submission history
From: Marcelo Fiore [view email][v1] Mon, 18 Jul 2022 17:35:31 UTC (49 KB)
[v2] Thu, 18 Aug 2022 11:45:26 UTC (47 KB)
Current browse context:
cs.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.