Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Jul 2022]
Title:Efficient View Clustering and Selection for City-Scale 3D Reconstruction
View PDFAbstract:Image datasets have been steadily growing in size, harming the feasibility and efficiency of large-scale 3D reconstruction methods. In this paper, a novel approach for scaling Multi-View Stereo (MVS) algorithms up to arbitrarily large collections of images is proposed. Specifically, the problem of reconstructing the 3D model of an entire city is targeted, starting from a set of videos acquired by a moving vehicle equipped with several high-resolution cameras. Initially, the presented method exploits an approximately uniform distribution of poses and geometry and builds a set of overlapping clusters. Then, an Integer Linear Programming (ILP) problem is formulated for each cluster to select an optimal subset of views that guarantees both visibility and matchability. Finally, local point clouds for each cluster are separately computed and merged. Since clustering is independent from pairwise visibility information, the proposed algorithm runs faster than existing literature and allows for a massive parallelization. Extensive testing on urban data are discussed to show the effectiveness and the scalability of this approach.
Submission history
From: Marco Orsingher [view email][v1] Mon, 18 Jul 2022 08:33:52 UTC (19,018 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.