Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Jul 2022]
Title:Stroke-Based Autoencoders: Self-Supervised Learners for Efficient Zero-Shot Chinese Character Recognition
View PDFAbstract:Chinese characters carry a wealth of morphological and semantic information; therefore, the semantic enhancement of the morphology of Chinese characters has drawn significant attention. The previous methods were intended to directly extract information from a whole Chinese character image, which usually cannot capture both global and local information simultaneously. In this paper, we develop a stroke-based autoencoder(SAE), to model the sophisticated morphology of Chinese characters with the self-supervised method. Following its canonical writing order, we first represent a Chinese character as a series of stroke images with a fixed writing order, and then our SAE model is trained to reconstruct this stroke image sequence. This pre-trained SAE model can predict the stroke image series for unseen characters, as long as their strokes or radicals appeared in the training set. We have designed two contrasting SAE architectures on different forms of stroke images. One is fine-tuned on existing stroke-based method for zero-shot recognition of handwritten Chinese characters, and the other is applied to enrich the Chinese word embeddings from their morphological features. The experimental results validate that after pre-training, our SAE architecture outperforms other existing methods in zero-shot recognition and enhances the representation of Chinese characters with their abundant morphological and semantic information.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.