Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Jul 2022]
Title:6D Camera Relocalization in Visually Ambiguous Extreme Environments
View PDFAbstract:We propose a novel method to reliably estimate the pose of a camera given a sequence of images acquired in extreme environments such as deep seas or extraterrestrial terrains. Data acquired under these challenging conditions are corrupted by textureless surfaces, image degradation, and presence of repetitive and highly ambiguous structures. When naively deployed, the state-of-the-art methods can fail in those scenarios as confirmed by our empirical analysis. In this paper, we attempt to make camera relocalization work in these extreme situations. To this end, we propose: (i) a hierarchical localization system, where we leverage temporal information and (ii) a novel environment-aware image enhancement method to boost the robustness and accuracy. Our extensive experimental results demonstrate superior performance in favor of our method under two extreme settings: localizing an autonomous underwater vehicle and localizing a planetary rover in a Mars-like desert. In addition, our method achieves comparable performance with state-of-the-art methods on the indoor benchmark (7-Scenes dataset) using only 20% training data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.