Computer Science > Machine Learning
[Submitted on 9 Jul 2022]
Title:Towards Highly Expressive Machine Learning Models of Non-Melanoma Skin Cancer
View PDFAbstract:Pathologists have a rich vocabulary with which they can describe all the nuances of cellular morphology. In their world, there is a natural pairing of images and words. Recent advances demonstrate that machine learning models can now be trained to learn high-quality image features and represent them as discrete units of information. This enables natural language, which is also discrete, to be jointly modelled alongside the imaging, resulting in a description of the contents of the imaging. Here we present experiments in applying discrete modelling techniques to the problem domain of non-melanoma skin cancer, specifically, histological images of Intraepidermal Carcinoma (IEC). Implementing a VQ-GAN model to reconstruct high-resolution (256x256) images of IEC images, we trained a sequence-to-sequence transformer to generate natural language descriptions using pathologist terminology. Combined with the idea of interactive concept vectors available by using continuous generative methods, we demonstrate an additional angle of interpretability. The result is a promising means of working towards highly expressive machine learning systems which are not only useful as predictive/classification tools, but also means to further our scientific understanding of disease.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.