Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Jul 2022 (v1), last revised 29 Feb 2024 (this version, v2)]
Title:Transferability-Guided Cross-Domain Cross-Task Transfer Learning
View PDF HTML (experimental)Abstract:We propose two novel transferability metrics F-OTCE (Fast Optimal Transport based Conditional Entropy) and JC-OTCE (Joint Correspondence OTCE) to evaluate how much the source model (task) can benefit the learning of the target task and to learn more transferable representations for cross-domain cross-task transfer learning. Unlike the existing metric that requires evaluating the empirical transferability on auxiliary tasks, our metrics are auxiliary-free such that they can be computed much more efficiently. Specifically, F-OTCE estimates transferability by first solving an Optimal Transport (OT) problem between source and target distributions, and then uses the optimal coupling to compute the Negative Conditional Entropy between source and target labels. It can also serve as a loss function to maximize the transferability of the source model before finetuning on the target task. Meanwhile, JC-OTCE improves the transferability robustness of F-OTCE by including label distances in the OT problem, though it may incur additional computation cost. Extensive experiments demonstrate that F-OTCE and JC-OTCE outperform state-of-the-art auxiliary-free metrics by 18.85% and 28.88%, respectively in correlation coefficient with the ground-truth transfer accuracy. By eliminating the training cost of auxiliary tasks, the two metrics reduces the total computation time of the previous method from 43 minutes to 9.32s and 10.78s, respectively, for a pair of tasks. When used as a loss function, F-OTCE shows consistent improvements on the transfer accuracy of the source model in few-shot classification experiments, with up to 4.41% accuracy gain.
Submission history
From: Yang Tan [view email][v1] Tue, 12 Jul 2022 13:06:16 UTC (6,362 KB)
[v2] Thu, 29 Feb 2024 06:53:00 UTC (6,790 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.