Electrical Engineering and Systems Science > Systems and Control
[Submitted on 12 Jul 2022]
Title:Herd Routes: A Preventative IoT-Based System for Improving Female Pedestrian Safety on City Streets
View PDFAbstract:Over two thirds of women of all ages in the UK have experienced some form of sexual harassment in a public space. Recent tragic incidents involving female pedestrians have highlighted some of the personal safety issues that women still face in cities today. There exist many popular location-based safety applications as a result of this; however, these applications tend to take a reactive approach where action is taken only after an incident has occurred. This paper proposes a preventative approach to the problem by creating safer public environments through societal incentivisation. The proposed system, called "Herd Routes", improves the safety of female pedestrians by generating busier pedestrian routes as a result of route incentivisation. A novel application of distributed ledgers is proposed to provide security and trust, a record of system users' locations and IDs, and a platform for token exchange. A proof-of-concept was developed using the simulation package SUMO (Simulation of Urban Mobility), and a smartphone app. was built in Android Studio so that pedestrian Hardware-in-the-Loop testing could be carried out to validate the technical feasibility and desirability of the system. With positive results from the initial testing of the proof-of-concept, further development could significantly contribute towards creating safer pedestrian routes through cities, and tackle the societal change that is required to improve female pedestrian safety in the long term.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.