Computer Science > Multiagent Systems
[Submitted on 7 Jul 2022]
Title:A Distributed Diffusion Kalman Filter In Multitask Networks
View PDFAbstract:The Distributed Diffusion Kalman Filter (DDKF) algorithm in all its magnitude has earned great attention lately and has shown an elaborate way to address the issue of distributed optimization over networks. Estimation and tracking of a single state vector collectively by nodes have been the point of focus. In reality, however, there are several multi-task-oriented issues where the optimal state vector for each node may not be the same. Its objective is to know many related tasks simultaneously, rather than the typical single-task problems. This work considers sensor networks for distributed multi-task tracking in which individual nodes communicate with its immediate nodes. A diffusion-based distributed multi-task tracking algorithm is developed. This is done by implementing an unsupervised adaptive clustering process, which aids nodes in forming clusters and collaborating on tasks. For distributed target tracking, an adaptive clustering approach, which gives agents the ability to identify and select through adaptive adjustments of combination weights nodes who to collaborate with and who not to in order to estimate the common state vector. This gave rise to an effective level of cooperation for improving state vector estimation accuracy, especially in cases where a cluster's background experience is unknown. To demonstrate the efficiency of our algorithm, computer simulations were conducted. Comparison has been carried out for the Diffusion Kalman Filter multitask with respect to the Adapt then combine (ATC) diffusion schemes utilizing both static and adaptive combination weights. Results showed that the ATC diffusion schemes algorithm has great performance with the adaptive combiners as compared to static combiners.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.