Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Jul 2022 (v1), last revised 5 Oct 2022 (this version, v3)]
Title:Back to MLP: A Simple Baseline for Human Motion Prediction
View PDFAbstract:This paper tackles the problem of human motion prediction, consisting in forecasting future body poses from historically observed sequences. State-of-the-art approaches provide good results, however, they rely on deep learning architectures of arbitrary complexity, such as Recurrent Neural Networks(RNN), Transformers or Graph Convolutional Networks(GCN), typically requiring multiple training stages and more than 2 million parameters. In this paper, we show that, after combining with a series of standard practices, such as applying Discrete Cosine Transform(DCT), predicting residual displacement of joints and optimizing velocity as an auxiliary loss, a light-weight network based on multi-layer perceptrons(MLPs) with only 0.14 million parameters can surpass the state-of-the-art performance. An exhaustive evaluation on the Human3.6M, AMASS, and 3DPW datasets shows that our method, named siMLPe, consistently outperforms all other approaches. We hope that our simple method could serve as a strong baseline for the community and allow re-thinking of the human motion prediction problem. The code is publicly available at \url{this https URL}.
Submission history
From: Yuming Du [view email][v1] Mon, 4 Jul 2022 16:35:58 UTC (1,363 KB)
[v2] Thu, 25 Aug 2022 17:59:15 UTC (1,407 KB)
[v3] Wed, 5 Oct 2022 21:15:42 UTC (1,407 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.