Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Jun 2022]
Title:AdvSmo: Black-box Adversarial Attack by Smoothing Linear Structure of Texture
View PDFAbstract:Black-box attacks usually face two problems: poor transferability and the inability to evade the adversarial defense. To overcome these shortcomings, we create an original approach to generate adversarial examples by smoothing the linear structure of the texture in the benign image, called AdvSmo. We construct the adversarial examples without relying on any internal information to the target model and design the imperceptible-high attack success rate constraint to guide the Gabor filter to select appropriate angles and scales to smooth the linear texture from the input images to generate adversarial examples. Benefiting from the above design concept, AdvSmo will generate adversarial examples with strong transferability and solid evasiveness. Finally, compared to the four advanced black-box adversarial attack methods, for the eight target models, the results show that AdvSmo improves the average attack success rate by 9% on the CIFAR-10 and 16% on the Tiny-ImageNet dataset compared to the best of these attack methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.