Computer Science > Sound
[Submitted on 13 Jun 2022]
Title:Low-complexity deep learning frameworks for acoustic scene classification
View PDFAbstract:In this report, we presents low-complexity deep learning frameworks for acoustic scene classification (ASC). The proposed frameworks can be separated into four main steps: Front-end spectrogram extraction, online data augmentation, back-end classification, and late fusion of predicted probabilities. In particular, we initially transform audio recordings into Mel, Gammatone, and CQT spectrograms. Next, data augmentation methods of Random Cropping, Specaugment, and Mixup are then applied to generate augmented spectrograms before being fed into deep learning based classifiers. Finally, to achieve the best performance, we fuse probabilities which obtained from three individual classifiers, which are independently-trained with three type of spectrograms. Our experiments conducted on DCASE 2022 Task 1 Development dataset have fullfiled the requirement of low-complexity and achieved the best classification accuracy of 60.1%, improving DCASE baseline by 17.2%.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.