Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Jun 2022 (v1), last revised 14 Mar 2023 (this version, v3)]
Title:Spatial Entropy as an Inductive Bias for Vision Transformers
View PDFAbstract:Recent work on Vision Transformers (VTs) showed that introducing a local inductive bias in the VT architecture helps reducing the number of samples necessary for training. However, the architecture modifications lead to a loss of generality of the Transformer backbone, partially contradicting the push towards the development of uniform architectures, shared, e.g., by both the Computer Vision and the Natural Language Processing areas. In this work, we propose a different and complementary direction, in which a local bias is introduced using an auxiliary self-supervised task, performed jointly with standard supervised training. Specifically, we exploit the observation that the attention maps of VTs, when trained with self-supervision, can contain a semantic segmentation structure which does not spontaneously emerge when training is supervised. Thus, we explicitly encourage the emergence of this spatial clustering as a form of training regularization. In more detail, we exploit the assumption that, in a given image, objects usually correspond to few connected regions, and we propose a spatial formulation of the information entropy to quantify this object-based inductive bias. By minimizing the proposed spatial entropy, we include an additional self-supervised signal during training. Using extensive experiments, we show that the proposed regularization leads to equivalent or better results than other VT proposals which include a local bias by changing the basic Transformer architecture, and it can drastically boost the VT final accuracy when using small-medium training sets. The code is available at this https URL.
Submission history
From: Marco De Nadai [view email][v1] Thu, 9 Jun 2022 17:34:39 UTC (15,453 KB)
[v2] Tue, 4 Oct 2022 10:20:12 UTC (22,048 KB)
[v3] Tue, 14 Mar 2023 15:07:16 UTC (29,463 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.