Electrical Engineering and Systems Science > Systems and Control
[Submitted on 8 Jun 2022]
Title:Structure-Preserving Model Order Reduction for Index Two Port-Hamiltonian Descriptor Systems
View PDFAbstract:We present a new optimization-based structure-preserving model order reduction (MOR) method for port-Hamiltonian descriptor systems (pH-DAEs) with differentiation index two. Our method is based on a novel parameterization that allows us to represent any linear time-invariant pH-DAE with a minimal number of parameters, which makes it well-suited to model reduction. We propose two algorithms which directly optimize the parameters of a reduced model to approximate a given large-scale model with respect to either the H-infinity or the H-2 norm. This approach has several benefits. Our parameterization ensures that the reduced model is again a pH-DAE system and enables a compact representation of the algebraic part of the large-scale model, which in projection-based methods often requires a more involved treatment. The direct optimization is entirely based on transfer function evaluations of the large-scale model and is therefore independent of the system matrices' structure. Numerical experiments are conducted to illustrate the high accuracy and small reduced model orders in comparison to other structure-preserving MOR methods.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.