Mathematics > Numerical Analysis
[Submitted on 8 Jun 2022 (v1), last revised 29 Apr 2024 (this version, v6)]
Title:Anderson acceleration with approximate calculations: applications to scientific computing
View PDF HTML (experimental)Abstract:We provide rigorous theoretical bounds for Anderson acceleration (AA) that allow for approximate calculations when applied to solve linear problems. We show that, when the approximate calculations satisfy the provided error bounds, the convergence of AA is maintained while the computational time could be reduced. We also provide computable heuristic quantities, guided by the theoretical error bounds, which can be used to automate the tuning of accuracy while performing approximate calculations. For linear problems, the use of heuristics to monitor the error introduced by approximate calculations, combined with the check on monotonicity of the residual, ensures the convergence of the numerical scheme within a prescribed residual tolerance. Motivated by the theoretical studies, we propose a reduced variant of AA, which consists in projecting the least-squares used to compute the Anderson mixing onto a subspace of reduced dimension. The dimensionality of this subspace adapts dynamically at each iteration as prescribed by the computable heuristic quantities. We numerically show and assess the performance of AA with approximate calculations on: (i) linear deterministic fixed-point iterations arising from the Richardson's scheme to solve linear systems with open-source benchmark matrices with various preconditioners and (ii) non-linear deterministic fixed-point iterations arising from non-linear time-dependent Boltzmann equations.
Submission history
From: Massimiliano Lupo Pasini Dr. [view email][v1] Wed, 8 Jun 2022 14:23:42 UTC (1,870 KB)
[v2] Sat, 18 Jun 2022 15:08:34 UTC (1,866 KB)
[v3] Fri, 11 Nov 2022 17:06:11 UTC (1,867 KB)
[v4] Thu, 18 May 2023 19:02:12 UTC (1,873 KB)
[v5] Tue, 30 May 2023 10:27:35 UTC (1,873 KB)
[v6] Mon, 29 Apr 2024 02:21:48 UTC (4,823 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.