Computer Science > Multiagent Systems
[Submitted on 8 Jun 2022]
Title:Stabilizing Voltage in Power Distribution Networks via Multi-Agent Reinforcement Learning with Transformer
View PDFAbstract:The increased integration of renewable energy poses a slew of technical challenges for the operation of power distribution networks. Among them, voltage fluctuations caused by the instability of renewable energy are receiving increasing attention. Utilizing MARL algorithms to coordinate multiple control units in the grid, which is able to handle rapid changes of power systems, has been widely studied in active voltage control task recently. However, existing approaches based on MARL ignore the unique nature of the grid and achieve limited performance. In this paper, we introduce the transformer architecture to extract representations adapting to power network problems and propose a Transformer-based Multi-Agent Actor-Critic framework (T-MAAC) to stabilize voltage in power distribution networks. In addition, we adopt a novel auxiliary-task training process tailored to the voltage control task, which improves the sample efficiency and facilitating the representation learning of the transformer-based model. We couple T-MAAC with different multi-agent actor-critic algorithms, and the consistent improvements on the active voltage control task demonstrate the effectiveness of the proposed method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.