Physics > Physics and Society
[Submitted on 1 Jun 2022 (v1), last revised 19 May 2023 (this version, v3)]
Title:The statistical nature of h-index of a network node
View PDFAbstract:Evaluating the importance of a network node is a crucial task in network science and graph data mining. H-index is a popular centrality measure for this task, however, there is still a lack of its interpretation from a rigorous statistical aspect. Here we show the statistical nature of h-index from the perspective of order statistics, and we obtain a new family of centrality indices by generalizing the h-index along this direction. The theoretical and empirical evidences show that such a statistical interpretation enables us to obtain a general and versatile framework for quantifying the importance of a network node. Under this framework, many new centrality indices can be derived and some of which can be more accurate and robust than h-index. We believe that this research opens up new avenues for developing more effective indices for node importance quantification from a viewpoint that still remains unexplored.
Submission history
From: Yan Liu [view email][v1] Wed, 1 Jun 2022 10:31:50 UTC (3,547 KB)
[v2] Thu, 2 Jun 2022 14:48:14 UTC (3,547 KB)
[v3] Fri, 19 May 2023 14:18:26 UTC (2,016 KB)
Current browse context:
physics.soc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.