Computer Science > Information Theory
[Submitted on 30 May 2022]
Title:Reconfigurable Intelligent Surface Aided Mobile Edge Computing over Intermittent mmWave Links
View PDFAbstract:The advent of Reconfigurable Intelligent Surfaces (RISs) in wireless communication networks unlocks the way to support high frequency radio access (e.g. in millimeter wave) while overcoming their sensitivity to the presence of deep fading and blockages. In support of this vision, this work exhibits the forward-looking perception of using RIS to enhance the connectivity of the communication links in edge computing scenarios, to support computation offloading services. We consider a multi-user MIMO system, and we formulate a long-term optimization problem aiming to ensure a bounded end-to-end delay with the minimum users average transmit power, by jointly selecting uplink user precoding, RIS reflectivity parameters, and computation resources at a mobile edge host. Thanks to the marriage of Lyapunov stochastic optimization, projected gradient techniques and convex optimization, the problem is efficiently solved in a per-slot basis, requiring only the observation of instantaneous realizations of time-varying radio channels and task arrivals, and that of communication and computing buffers. Numerical simulations show the effectiveness of our method and the benefits of the RIS, in striking the best trade-off between power consumption and delay for different blocking conditions, also when different levels of channel knowledge are assumed.
Submission history
From: Fatima Ezzahra Airod [view email][v1] Mon, 30 May 2022 12:31:58 UTC (204 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.