Mathematics > Optimization and Control
[Submitted on 27 May 2022 (v1), last revised 13 Apr 2024 (this version, v4)]
Title:Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming
View PDF HTML (experimental)Abstract:We consider online statistical inference of constrained stochastic nonlinear optimization problems. We apply the Stochastic Sequential Quadratic Programming (StoSQP) method to solve these problems, which can be regarded as applying second-order Newton's method to the Karush-Kuhn-Tucker (KKT) conditions. In each iteration, the StoSQP method computes the Newton direction by solving a quadratic program, and then selects a proper adaptive stepsize $\bar{\alpha}_t$ to update the primal-dual iterate. To reduce dominant computational cost of the method, we inexactly solve the quadratic program in each iteration by employing an iterative sketching solver. Notably, the approximation error of the sketching solver need not vanish as iterations proceed, meaning that the per-iteration computational cost does not blow up. For the above StoSQP method, we show that under mild assumptions, the rescaled primal-dual sequence $1/\sqrt{\bar{\alpha}_t}\cdot (x_t - x^\star, \lambda_t - \lambda^\star)$ converges to a mean-zero Gaussian distribution with a nontrivial covariance matrix depending on the underlying sketching distribution. To perform inference in practice, we also analyze a plug-in covariance matrix estimator. We illustrate the asymptotic normality result of the method both on benchmark nonlinear problems in CUTEst test set and on linearly/nonlinearly constrained regression problems.
Submission history
From: Sen Na [view email][v1] Fri, 27 May 2022 00:34:03 UTC (5,016 KB)
[v2] Fri, 5 Aug 2022 02:33:20 UTC (5,018 KB)
[v3] Thu, 3 Aug 2023 22:50:29 UTC (2,019 KB)
[v4] Sat, 13 Apr 2024 21:08:29 UTC (2,213 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.