Computer Science > Neural and Evolutionary Computing
[Submitted on 6 May 2022 (v1), last revised 23 Aug 2022 (this version, v2)]
Title:Stochastic resonance neurons in artificial neural networks
View PDFAbstract:Many modern applications of the artificial neural networks ensue large number of layers making traditional digital implementations increasingly complex. Optical neural networks offer parallel processing at high bandwidth, but have the challenge of noise accumulation. We propose here a new type of neural networks using stochastic resonances as an inherent part of the architecture and demonstrate a possibility of significant reduction of the required number of neurons for a given performance accuracy. We also show that such a neural network is more robust against the impact of noise.
Submission history
From: Diego Argüello Ron [view email][v1] Fri, 6 May 2022 18:42:36 UTC (1,696 KB)
[v2] Tue, 23 Aug 2022 12:02:23 UTC (2,078 KB)
Current browse context:
cs.NE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.