Computer Science > Machine Learning
[Submitted on 19 May 2022]
Title:A Simple Yet Effective SVD-GCN for Directed Graphs
View PDFAbstract:In this paper, we propose a simple yet effective graph neural network for directed graphs (digraph) based on the classic Singular Value Decomposition (SVD), named SVD-GCN. The new graph neural network is built upon the graph SVD-framelet to better decompose graph signals on the SVD ``frequency'' bands. Further the new framelet SVD-GCN is also scaled up for larger scale graphs via using Chebyshev polynomial approximation. Through empirical experiments conducted on several node classification datasets, we have found that SVD-GCN has remarkable improvements in a variety of graph node learning tasks and it outperforms GCN and many other state-of-the-art graph neural networks for digraphs. Moreover, we empirically demonstate that the SVD-GCN has great denoising capability and robustness to high level graph data attacks. The theoretical and experimental results prove that the SVD-GCN is effective on a variant of graph datasets, meanwhile maintaining stable and even better performance than the state-of-the-arts.
Submission history
From: Junbin Gao Professor [view email][v1] Thu, 19 May 2022 06:23:44 UTC (314 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.