Computer Science > Artificial Intelligence
[Submitted on 18 May 2022]
Title:$(O,G)$-granular variable precision fuzzy rough sets based on overlap and grouping functions
View PDFAbstract:Since Bustince et al. introduced the concepts of overlap and grouping functions, these two types of aggregation functions have attracted a lot of interest in both theory and applications. In this paper, the depiction of $(O,G)$-granular variable precision fuzzy rough sets ($(O,G)$-GVPFRSs for short) is first given based on overlap and grouping functions. Meanwhile, to work out the approximation operators efficiently, we give another expression of upper and lower approximation operators by means of fuzzy implications and co-implications. Furthermore, starting from the perspective of construction methods, $(O,G)$-GVPFRSs are represented under diverse fuzzy relations. Finally, some conclusions on the granular variable precision fuzzy rough sets (GVPFRSs for short) are extended to $(O,G)$-GVPFRSs under some additional conditions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.